On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations - DTU Orbit (12/12/2018)

On the isotropic elastic constants of graphite nodules in ductile cast iron: Analytical and numerical micromechanical investigations

A comprehensive description of the mechanical behavior of nodules in ductile iron is still missing in the published literature. Nevertheless, experimental evidence exists for the importance of such graphite particles during macroscopic material deformation, especially under compressive loading. In the present paper, the nodules' elastic properties are thoroughly investigated by means of both analytical and numerical techniques. The analysis takes into account the influence of several non-linear phenomena, as local residual stresses arising during solid-state cooling, interface debonding and limited particle strength. It is shown that if the nodule internal structure is considered, the traditional isotropy assumption leads to the definition of a domain of admissible values for the effective elastic constants. However, micromechanical calculations indicate that values within the domain do not provide mesoscopic moduli in agreement with Young's modulus and Poisson's ratio recorded for common ferritic ductile iron grades. This suggests that graphite nodules may not be considered isotropic at the microscopic scale, at least from a mechanical viewpoint.

General information
State: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering
Contributors: Andriollo, T., Hattel, J.
Pages: 138-150
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Mechanics of Materials
ISSN (Print): 0167-6636
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.91 SJR 1.248 SNIP 1.659
Web of Science (2017): Impact factor 2.697
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.76 SJR 1.253 SNIP 1.593
Web of Science (2016): Impact factor 2.651
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.66 SJR 1.21 SNIP 1.796
Web of Science (2015): Impact factor 2.636
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.56 SJR 1.376 SNIP 1.83
Web of Science (2014): Impact factor 2.329
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.58 SJR 1.188 SNIP 1.721
Web of Science (2013): Impact factor 2.225
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.2 SJR 1.288 SNIP 1.882
Web of Science (2012): Impact factor 1.936
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.22 SJR 1.448 SNIP 1.924
Web of Science (2011): Impact factor 1.769
Keywords: Micromechanics, Ductile cast iron, Spheroidal graphite iron, Graphite nodules, Isotropic effective elastic moduli

DOIs:
10.1016/j.mechmat.2016.02.007

Research output: Research - peer-review › Journal article – Annual report year: 2016