On the Effect of Populations in Evolutionary Multi-Objective Optimisation

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

Multi-objective evolutionary algorithms (MOEAs) have become increasingly popular as multi-objective problem solving techniques. An important open problem is to understand the role of populations in MOEAs. We present two simple bi-objective problems which emphasise when populations are needed. Rigorous runtime analysis points out an exponential runtime gap between the population-based algorithm Simple Evolutionary Multi-objective Optimiser (SEMO) and several single individual-based algorithms on this problem. This means that among the algorithms considered, only the population-based MOEA is successful and all other algorithms fail.
Original languageEnglish
JournalEvolutionary Computation
Publication date2010
Volume18
Issue3
Pages335-356
ISSN1063-6560
DOIs
StatePublished
CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5614748