On clustering fMRI time series

Publication: Research - peer-reviewJournal article – Annual report year: 1999

View graph of relations

Analysis of fMRI time series is often performed by extracting one or more parameters for the individual voxels. Methods based, e.g., on various statistical tests are then used to yield parameters corresponding to probability of activation or activation strength. However, these methods do not indicate whether sets of voxels are activated in a similar way or in different ways. Typically, delays between two activated signals are not identified. In this article, we use clustering methods to detect similarities in activation between voxels. We employ a novel metric that measures the similarity between the activation stimulus and the fMRI signal. We present two different clustering algorithms and use them to identify regions of similar activations in an fMRI experiment involving a visual stimulus.
Original languageEnglish
JournalNeuroImage
Publication date1999
Volume9
Issue3
Pages298-310
ISSN1053-8119
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 189
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 3934768