Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT - DTU Orbit (28/01/2019)

The offshore wind climatology in the Northern European seas is analysed from ten years of Envisat synthetic aperture radar (SAR) images using a total of 9256 scenes, ten years of QuikSCAT and two years of ASCAT gridded ocean surface vector wind products and high-quality wind observations from four meteorological masts in the North Sea. The traditional method for assessment of the wind resource for wind energy application is through analysis of wind speed and wind direction observed during one or more years at a meteorological mast equipped with well-calibrated anemometers at several levels. The cost of such measurements is very high and therefore they are only sparsely available. An alternative method is the application of satellite remote sensing. Comparison of wind resource statistics from satellite products is presented and discussed including the uncertainty on the wind resource. The diurnal wind variability is found to be negligible at some location but up to 0.5 m s$^{-1}$ at two sites. Synergetic use of observations from multiple satellites in different orbits provides wind observations at six times in the diurnal cycle and increases the number of observations. At Horns Rev M2, FINO1 and Greater Gabbard satellite and in situ collocated samples show differences in mean wind speed of $\pm 2\%$, $\pm 1\%$ and 3%, respectively. At Egmond aan Zee the difference is 10\%. It is most likely due to scatterometer data sampled further offshore than at the meteorological mast. Comparing energy density with all samples at Horns Rev M2 shows overestimation 7–19\% and at FINO1 underestimation 2–5\% but no clear conclusion can be drawn as the comparison data are not collocated. At eight new offshore wind farm areas in Denmark, the variability in mean energy density observed by SAR ranges from 347 W m$^{-2}$ in Sejerøbugten to 514 W m$^{-2}$ at Horns Rev 3. The spatial variability in the near-shore areas is much higher than at areas located further offshore.

General information
State: Published
Organisations: Department of Wind Energy, Meteorology, IFREMER, CLS, KNMI
Contributors: Hasager, C. B., Mouche, A., Badger, M., Bingöl, F., Karagali, I., Driesenaar, T., Stoffelen, A., Peña, A., Longépé, N.
Pages: 247–263
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Remote Sensing of Environment
Volume: 156
ISSN (Print): 0034-4257
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.16 SJR 3.121 SNIP 2.5
Web of Science (2017): Impact factor 6.457
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 6.92 SJR 3.035 SNIP 2.956
Web of Science (2016): Impact factor 6.265
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.27 SJR 3.697 SNIP 3.044
Web of Science (2015): Impact factor 5.881
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.21 SJR 3.881 SNIP 3.477
Web of Science (2014): Impact factor 6.393
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 5.6 SJR 3.148 SNIP 2.982
Web of Science (2013): Impact factor 4.769
ISI indexed (2013): ISI indexed yes