Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals - DTU Orbit (31/12/2018)

Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals

beta-Lactams and macrolides are important antibiotics for treatment of staphylococcal infections in both humans and animals. The aim of the study was to investigate the occurrence, species distribution and clonality of methicillin and erythromycin-resistant staphylococci in the nasal cavity of dogs, horses, pigs, and cattle in Denmark. Nasal swabs were collected from a total of 400 animals, including 100 individuals of each species. Methicillin and erythromycin-resistant staphylococci were isolated on selective media, identified by 16S rDNA sequencing, and typed by pulsed field gel electrophoresis (PFGE). Methicillin-resistant coagulase-negative staphylococci (MRCoNS) harbouring mecA were isolated from horses (50%) and dogs (13%), but not from food animals. The species identified were S. haemolyticus (n = 21), S. vitulinus (n = 19), S. sciuri (n = 13), S. epidermidis (n = 8), and S. warneri (n = 2). mecA-mediated methicillin resistance in S. vitulinus was described for the first time. Methicillin-resistant S. aureus was not detected. PFGE analysis revealed the presence of specific MRCoNS clones in samples originating from the same veterinary hospital or equine farm. Erythromycin-resistant S. aureus (ERSA) was detected in 38% of pigs and all isolates harboured a constitutively expressed erm

General information
State: Published
Organisations: Division of Microbiology and Risk Assessment, National Food Institute
Contributors: Bagcigil, F. A., Moodley, A., Baptiste, K. E., Jensen, V. F., Guardabassi, L.
Pages: 307-315
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Veterinary Microbiology
Volume: 121
Issue number: 3-4
ISSN (Print): 0378-1135
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.7 SJR 1.175 SNIP 1.241
Web of Science (2017): Impact factor 2.524
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.65 SJR 1.363 SNIP 1.206
Web of Science (2016): Impact factor 2.628
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.56 SJR 1.413 SNIP 1.21
Web of Science (2015): Impact factor 2.564
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.54 SJR 1.291 SNIP 1.256
Web of Science (2014): Impact factor 2.511
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3 SJR 1.459 SNIP 1.471
Web of Science (2013): Impact factor 2.726
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.18 SJR 1.441 SNIP 1.569
Web of Science (2012): Impact factor 3.127