Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations - DTU Orbit (25/12/2018)

Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations

The present work applies the shoreline model from part 1 to a real environment. In part 1, a numerical shoreline model which could handle the development of arbitrarily shaped shorelines was applied to consider the development of shoreline undulations on an unstable shoreline exposed to incoming waves with a directional spreading. In this paper, these findings are extended to firstly include the effect of a varying wave climate on the shoreline morphology and secondly, to tune the model to two naturally occurring shorelines. It is found that the effect of a variable wave climate is to slow down the development of the morphology and in some cases to inhibit the formation of shore-parallel spits at the crest of the undulations. On one of the natural shorelines, the west coast of Namibia, the shore is exposed to very obliquely waves from one main direction. Here, the shoreline model is able to describe the observed shoreline features qualitatively and quantitatively. The model slightly over-predicts the scale of the feature and, associated with this, slightly under-predicts the migration speeds of the features. On the second shoreline, the west coast of Denmark, the shore is exposed to waves with an angle close to the critical around 45°, and here the existence of undulations is discussed in detail. © 2012 Published by Elsevier B.V.

General information

State: Published
Organisations: Department of Mechanical Engineering, Coastal, Maritime and Structural Engineering, Fluid Mechanics, Coastal and Maritime Engineering
Contributors: Kærgaard, K. H., Fredsøe, J.
Pages: 77-90
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Coastal Engineering
Volume: 75
ISSN (Print): 0378-3839
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.28 SJR 1.767 SNIP 1.818
Web of Science (2017): Impact factor 2.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.44 SJR 2.133 SNIP 2.24
Web of Science (2016): Impact factor 3.221
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.9 SJR 1.877 SNIP 2.074
Web of Science (2015): Impact factor 2.841
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.55 SJR 1.804 SNIP 2.087
Web of Science (2014): Impact factor 2.428
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.58 SJR 1.654 SNIP 2.234
Web of Science (2013): Impact factor 2.062
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.21 SJR 1.931 SNIP 2.159
Web of Science (2012): Impact factor 2.239
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.43 SJR 1.522 SNIP 2.476
Web of Science (2011): Impact factor 1.757
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.777 SNIP 2.286
Web of Science (2010): Impact factor 1.624
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.007 SNIP 2.417
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.16 SNIP 2.139
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.704 SNIP 2.108
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.106 SNIP 2.058
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.157 SNIP 2.022
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.108 SNIP 2.27
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.934 SNIP 1.858
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.699 SNIP 1.127
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.643 SNIP 1.07
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.358 SNIP 1.241
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.429 SNIP 1.053
Original language: English
Keywords: Shoreline undulations, Shoreline spit, Numerical model, West coast of Namibia, West coast of Denmark
Electronic versions:
Numerical_modeling_part_2.pdf
DOIs:
10.1016/j.coastaleng.2012.11.003
Source: dtu
Source-ID: n::oai:DTIC-ART:elsevier/384054106::27399
Research output: Research - peer-review ; Journal article – Annual report year: 2013