Numerical Investigation of Vertical Cavity Lasers With High-Contrast Gratings Using the Fourier Modal Method

We explore the use of a modal expansion technique, Fourier modal method (FMM), for investigating the optical properties of vertical cavities employing high-contrast gratings (HCGs). Three techniques for determining the resonance frequency and quality factor (Q-factor) of a cavity mode are compared, and the computational uncertainties in the resonance frequency and Q-factor calculations are analyzed. Moreover, a method for reducing a three-dimensional (3D) simulation to lower-dimensional simulations is suggested, which allows for very fast and approximate analysis of a 3D structure. By using the implemented FMM, the scattering losses of several HCG-based vertical cavities with inplane heterostructures which have promising prospects for fundamental physics studies and on-chip laser applications, are investigated. This type of parametric study of 3D structures would be numerically very demanding using spatial discretization techniques.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing
Contributors: Taghizadeh, A., Mørk, J., Chung, I.
Pages: 4240-4251
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Lightwave Technology
Volume: 34
Issue number: 18
ISSN (Print): 0733-8724
Ratings:
 BFI (2019): BFI-level 2
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 2
 Scopus rating (2017): CiteScore 4.42 SJR 1.166 SNIP 1.791
 Web of Science (2017): Impact factor 3.652
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 2
 Scopus rating (2016): CiteScore 3.87 SJR 1.23 SNIP 1.819
 Web of Science (2016): Impact factor 3.671
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 2
 Scopus rating (2015): CiteScore 4.15 SJR 1.598 SNIP 1.901
 Web of Science (2015): Impact factor 2.567
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 2
 Scopus rating (2014): CiteScore 4.23 SJR 1.737 SNIP 2.411
 Web of Science (2014): Impact factor 2.965
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 2
 Scopus rating (2013): CiteScore 4.03 SJR 1.622 SNIP 2.439
 Web of Science (2013): Impact factor 2.862
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 2
 Scopus rating (2012): CiteScore 3.21 SJR 1.886 SNIP 2.491
 Web of Science (2012): Impact factor 2.555
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 2