Numerical Fluid-Structure Interaction Study on the NREL 5MW HAWT

Publication: Research - peer-reviewConference article – Annual report year: 2018

Documents

DOI

View graph of relations

The development of reliable Fluid-Structure Interaction (FSI) simulation tools and models for the wind turbines is a critical step in the design procedure towards achieving optimized large wind turbine structures. Such approach will mitigate the aeroelastic instabilities like: torsional flutter, stall flutter and edgewise instability that introduce extra stresses to the turbine structure leading to reduced life time and substantial failures. In this study, FSI simulations were held using the commercial package Ansys v18.2 solvers as a preliminary step towards our on-going development of a reliable Open-Source solver. These simulations were applied to the full-scale rotor blades of the NREL 5MW reference horizontal axis wind turbine. The aerodynamic loads and structural responses computations were carried out using a steady-state FSI analysis. The computations were run on the Kyushu University multi-core Linux cluster using the public domain openMPI implementation of the standard message passing interface (MPI). Finally, the results were validated against the Technical University of Denmark’s (DTU) MIRAS aeroelastic code results as well as the widely used FLEX5-Q3UIC and FAST codes in different cases showing reasonable agreement.
Original languageEnglish
Article number022026
Book seriesJournal of Physics: Conference Series
Volume1037
Issue number2
Number of pages9
ISSN1742-6596
DOIs
StatePublished - 2018
EventTorque 2018 - Milan, Italy

Conference

ConferenceTorque 2018
LocationPOLIMI
CountryItaly
CityMilan
Period20/06/201822/06/2018
Internet address

Bibliographical note

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

CitationsWeb of Science® Times Cited: No match on DOI
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 149581660