Nucleic Acid Aptamers as Novel Class of Therapeutics to Mitigate Alzheimer's Disease Pathology - DTU Orbit (18/01/2019)

Nucleic Acid Aptamers as Novel Class of Therapeutics to Mitigate Alzheimer's Disease Pathology
Deposition of amyloid-beta (A beta) peptides in the brain is a central event in the pathogenesis of Alzheimer's disease (AD), which makes A beta peptides a crucial target for therapeutic intervention. Significant efforts have been made towards the development of ligands that bind to A beta peptides with a goal of early detection of amyloid aggregation and the neutralization of A toxicity. Short single-stranded oligonucleotide aptamers bind with high affinity and specificity to their targets. Aptamers that specifically bind to A beta monomers, specifically the 40 and 42 amino acid species (A beta(1-40) and A beta(1-42)), fibrils and plaques have a great potential for diagnostic applications and the treatment of AD. Herein, we review the aptamers that bind to the various forms of A beta peptides for use in diagnosis and to inhibit plaque formation.

General information
State: Published
Organisations: Department of Systems Biology, Novo Nordisk Foundation Center for Biosustainability, Bacterial Cell Factories, University of Queensland, Deakin University
Pages: 442
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Current Alzheimer Research
Volume: 10
Issue number: 4
ISSN (Print): 1567-2050
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 3.03 SJR 1.187 SNIP 0.801
Web of Science (2017): Impact factor 3.289
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 3.2 SJR 1.207 SNIP 0.81
Web of Science (2016): Impact factor 2.952
Scopus rating (2015): CiteScore 3.5 SJR 1.628 SNIP 0.896
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.95 SJR 1.794 SNIP 0.967
Web of Science (2014): Impact factor 3.889
Scopus rating (2013): CiteScore 3.88 SJR 1.67 SNIP 0.928
Web of Science (2013): Impact factor 3.796
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 4.07 SJR 1.509 SNIP 1.046
Web of Science (2012): Impact factor 3.676
ISI indexed (2012): ISI indexed yes
Scopus rating (2011): CiteScore 4.39 SJR 1.608 SNIP 1.082
Web of Science (2011): Impact factor 3.953
ISI indexed (2011): ISI indexed yes
Scopus rating (2010): SJR 2.034 SNIP 1.107
Web of Science (2010): Impact factor 4.953
Scopus rating (2009): SJR 1.864 SNIP 1.083
Scopus rating (2008): SJR 1.605 SNIP 0.943
Scopus rating (2007): SJR 1.415 SNIP 0.903
Scopus rating (2006): SJR 0.99 SNIP 0.553
Scopus rating (2005): SJR 0.48
Original language: English
Source: dtu