NOx conversion on LSM15-CGO10 cell stacks with BaO impregnation - DTU Orbit
(16/12/2018)

NOx conversion on LSM15-CGO10 cell stacks with BaO impregnation
The electrochemical conversion of NOx on non-impregnated and BaO-impregnated LSM15-CGO10 (La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95) porous cell stacks has been investigated, and extensive impedance analysis have been performed to identify the effect of the BaO on the electrode processes. The investigation was conducted in the temperature range 300-500 degrees C, a polarisation range from 3 V to 9 V and in atmospheres containing 1000 ppm NO, 1000 ppm NO + 10% O2 and 10% O2. On the non-impregnated cell stacks no NOx conversion was observed under any of the investigated conditions. However, BaO impregnation greatly enhanced the NOx conversion and at 400 degrees C and 9 V polarisation a BaO-impregnated cell stack showed 60% NOx conversion into N2 with 8% current efficiency in 1000 ppm NO + 10% O2. This demonstrates high NOx conversion can be achieved on an entirely ceramic cell without expensive noble metals. Furthermore the NOx conversion and current efficiency was shown to be strongly dependent on temperature and polarisation. The impedance analysis revealed that the BaO-impregnation increased the overall activity of the cell stacks, but also changed the adsorption state of NOx on the electrodes; whether the increased activity or the changed adsorption state is mainly responsible for the improved NOx conversion remains unknown.

General information
State: Published
Organisations: Department of Energy Conversion and Storage, Fundamental Electrochemistry, Ceramic Engineering & Science
Contributors: Traulsen, M. L., Andersen, K. B., Kammer Hansen, K.
Pages: 11792-11800
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Journal of Materials Chemistry
Volume: 22
Issue number: 23
ISSN (Print): 0959-9428
Ratings:
Web of Science (2017): Indexed yes
BFI (2015): BFI-level 2
BFI (2014): BFI-level 2
BFI (2013): BFI-level 2
Web of Science (2013): Impact factor 6.626
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Web of Science (2011): Impact factor 5.968
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Web of Science (2010): Impact factor 5.101
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Web of Science (2005): Indexed yes
Web of Science (2004): Indexed yes
Web of Science (2003): Indexed yes
Web of Science (2002): Indexed yes