Novel tools to assist neoepitope targeting in personalized cancer immunotherapy - DTU Orbit (25/12/2018)

Novel tools to assist neoepitope targeting in personalized cancer immunotherapy

Current cancer immunotherapy approaches utilize the remarkable surveillance capacity of the human immune system, which is capable of recognizing and eliminating cancer cells based on identification of tumor-associated antigens arising as a consequence of the transformation process. Among these, mutational-derived neoepitopes have proved to be powerful targets for tumor elimination and mutational load has been shown to correlate with the clinical response to treatment with checkpoint inhibitors in many different tumor types. This suggests a crucial role for neoepitope recognition in T-cell-mediated tumor eradication. Consequently, strategies to further boost neoepitope recognition, through vaccination or adoptive cell transfer, has received substantial interest. Although such strategies have enormous potential, there are also considerable challenges associated with these approaches. In the present review, we will focus on how novel technological developments can facilitate and improve feasibility and efficacy in neoepitope targeting.

General information
State: Published
Organisations: Section for Immunology and Vaccinology, National Veterinary Institute, T-cells & Cancer
Contributors: Saini, S. K., Rekers, N., Hadrup, S. R.
Pages: 3-10
Publication date: 2017
Peer-reviewed: Yes

Publication Information
Journal: Annals of Oncology
Volume: 28
Issue number: suppl_12
ISSN (Print): 0923-7534
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 8.97 SJR 5.599 SNIP 3.46
Web of Science (2017): Impact factor 13.926
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 8.09 SJR 5.096 SNIP 3.123
Web of Science (2016): Impact factor 11.855
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 7.39 SJR 4.337 SNIP 2.839
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 6.2 SJR 3.723 SNIP 2.539
Web of Science (2014): Impact factor 7.04
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 5.66 SJR 3.175 SNIP 2.431
Web of Science (2013): Impact factor 6.578
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.77 SJR 3.25 SNIP 2.537
Web of Science (2012): Impact factor 7.384
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 5.04 SJR 2.82 SNIP 2.135
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes