Novel Platforms for the Development of a Universal influenza vaccine

Despite advancements in immunotherapeutic approaches, influenza continues to cause severe illness, particularly among immunocompromised individuals, young children, and elderly adults. Vaccination is the most effective way to reduce rates of morbidity and mortality caused by influenza viruses. Frequent genetic shift and drift among influenzavirus strains with the resultant disparity between circulating and vaccine virus strains limits the effectiveness of the available conventional influenza vaccines. One approach to overcome this limitation is to develop a universal influenza vaccine that could provide protection against all subtypes of influenza viruses. Moreover, the development of a novel or improved universal influenza vaccines may be greatly facilitated by new technologies including virus-like particles, T-cell-inducing peptides and recombinant proteins, synthetic viruses, broadly neutralizing antibodies, and nucleic acid-based vaccines. This review discusses recent scientific advances in the development of next-generation universal influenza vaccines.

General information
State: Published
Organisations: National Veterinary Institute, T-cells & Cancer, Linköping University, GSK Vaccines S.r.l.
Contributors: Kumar, A., Meldgaard, T. S., Bertholet, S.
Number of pages: 14
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Immunology
Volume: 9
Article number: 600
ISSN (Print): 1664-3224
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.62 SJR 2.803 SNIP 1.484
Web of Science (2017): Impact factor 5.511
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 5.37 SJR 3.034 SNIP 1.476
Web of Science (2016): Impact factor 6.429
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 5.09 SJR 2.827 SNIP 1.277
Web of Science (2015): Impact factor 5.695
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 4.24 SJR 2.389 SNIP 1.057
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.55 SJR 1.906 SNIP 0.855
ISI indexed (2013): ISI indexed no
Scopus rating (2012): CiteScore 1.38 SJR 0.809 SNIP 0.193
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.121
Web of Science (2011): Indexed yes
Original language: English
Keywords: Influenza, Hemagglutinin, Virus-like particles, Universal flu vaccine, Neutralizing antibodies, Vaccination strategies, Functional antibody responses
Electronic versions:
fimmu_09_00600_1_.pdf
DOIs:
10.3389/fimmu.2018.00600
Source: FindIt
Source-ID: 2397695956
Research output: Research - peer-review > Journal article – Annual report year: 2018