Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering - DTU Orbit (02/08/2018)

The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SOI), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 μm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles.

General information
State: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, Center for Individual Nanoparticle Functionality, Department of Micro- and Nanotechnology, Silicon Microtechnology, Department of Energy Conversion and Storage, Imaging and Structural Analysis, Experimental Surface and Nanomaterials Physics, Paul Scherrer Institut
Number of pages: 9
Pages: 455-463
Publication date: 2016
Main Research Area: Technical/natural sciences

Publication information
Journal: Journal of Synchrotron Radiation
Volume: 23
Issue number: 2
ISSN (Print): 0909-0495
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): SNIP 1.431 SJR 1.65 CiteScore 3.12
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.86 SJR 1.521 SNIP 1.491
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 1.146 SNIP 1.301 CiteScore 2.45
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 1.317 SNIP 1.477 CiteScore 2.58
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): SJR 1.476 SNIP 1.676 CiteScore 2.91
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): SJR 1.465 SNIP 1.261 CiteScore 2.36
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): SJR 1.736 SNIP 1.403 CiteScore 2.45
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.629 SNIP 1.466
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.507 SNIP 1.386