Non-singular Green's functions for the unbounded Poisson equation in one, two and three dimensions

In this paper, we derive the non-singular Green's functions for the unbounded Poisson equation in one, two and three dimensions using a spectral cut-off function approach to impose a minimum length scale in the homogeneous solution. The resulting non-singular Green's functions are relevant to applications which are restricted to a minimum resolved length scale (e.g. a mesh size) and thus cannot handle the singular Green's function of the continuous Poisson equation. We furthermore derive the gradient vector of the non-singular Green's function, as this is useful in applications where the Poisson equation represents potential functions of a vector field.

General information
State: Published
Organisations: Department of Mechanical Engineering, Fluid Mechanics, Coastal and Maritime Engineering, Universite Catholique de Louvain
Pages: 28-34
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Applied Mathematics Letters
Volume: 89
ISSN (Print): 0893-9659
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.6 SJR 1.457 SNIP 1.579
Web of Science (2017): Impact factor 2.462
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.02 SJR 1.4 SNIP 1.49
Web of Science (2016): Impact factor 2.233
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.52 SJR 1.125 SNIP 1.272
Web of Science (2015): Impact factor 1.659
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.62 SJR 1.045 SNIP 1.533
Web of Science (2014): Impact factor 1.337
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.66 SJR 1.106 SNIP 1.509
Web of Science (2013): Impact factor 1.48
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.81 SJR 1.284 SNIP 1.575
Web of Science (2012): Impact factor 1.501
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.56 SJR 1.24 SNIP 1.406
Web of Science (2011): Impact factor 1.371
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.845 SNIP 1.126
Web of Science (2010): Impact factor 1.155
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.875 SNIP 1.205
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.017 SNIP 1.283