Nonlinear Parasitic Capacitance Modelling of High Voltage Power MOSFETs in Partial SOI Process

State-of-the-art power converter topologies such as resonant converters are either designed with or affected by the parasitic capacitances of the power switches. However, the power switches are conventionally characterized in terms of switching time and/or gate charge with little insight into the nonlinearities of the parasitic capacitances. This paper proposes a modelling method that can be utilized to systematically analyse the nonlinear parasitic capacitances. The existing ways of characterizing the off-state capacitance can be extended by the proposed circuit model that covers all the related states: off-state, sub-threshold region, and on-state in the linear region. A high voltage power MOSFET is designed in a partial Silicon on Insulator (SOI) process, with the bulk as a separate terminal. 3D plots and contour plots of the capacitances versus bias voltages for the transistor summarize the nonlinearities of the parasitic capacitances. The equivalent circuits in different states and the evaluation equations are provided.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Electronics
Contributors: Fan, L., Knott, A., Jørgensen, I. H. H.
Pages: 37-43
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Elektronika ir Elektrotechnika
Volume: 22
Issue number: 3
ISSN (Print): 1392-1215
Ratings:
Scopus rating (2016): CiteScore 0.85 SJR 0.294 SNIP 0.677
Web of Science (2016): Impact factor 0.859
Web of Science (2016): Indexed yes
Original language: English
Keywords: Nonlinear circuits, Parasitic capacitance, Power MOSFET, Silicon-on-insulator
Electronic versions:
15312_45538_1_PB.pdf
DOIs:
10.5755/j01.eie.22.3.15312
Source: PublicationPreSubmission
Source-ID: 124225549
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review