Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat - DTU Orbit (14/12/2018)

Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat

Background: Muscle tissue from various sources is known to promote nonheme-iron absorption. However, systematic studies of the dose dependency of this effect of meat on iron absorption from an inhibitory meal with low amounts of meat are lacking.

Objective: We investigated the dose-response effect of small amounts of meat on nonheme-iron absorption from a meal presumed to have low iron bioavailability.

Design: Forty-five healthy women with a mean (+/-SD) age of 24 +/- 3 y were randomly assigned to I of 3 groups, each of which was served (A) a basic meal (rice, tomato sauce, pea puree, and a wheat roll) and (B) the basic meal with either 25, 50, or 75 g pork (longissimus muscle). Meal A contained 2.3 mg nonheme iron, 7.4 mg vitamin C, and 220 mg (358 mumol) phytate. Each meal was served twice, and the order of the meals was ABBA or BAAB. The meals were extrinsically labeled with Fe-55 or Fe-59. Iron absorption was determined from measurements of Fe-59 whole-body retention and the activity of Fe-55 and Fe-59 in blood samples.

Results: Twenty-five grams meat did not increase nonheme-iron absorption significantly (P = 0.13), whereas absorption increased 44% (P < 0.001) and 57% (P < 0.001), respectively, when 50 and 75 g meat were added to the basic meal. In absolute values, this corresponds to an absorption that was 2.6% and 3.4% higher, respectively, than that with the basic meal after adjustment of the data to a level of 40% absorption from a reference dose.

Conclusion: Small amounts of meat (greater than or equal to 50 g) significantly increase nonheme-iron absorption from a phytate-rich meal low in vitamin C.
Web of Science (2013): Impact factor 6.918
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.05 SJR 3.744 SNIP 2.432
Web of Science (2012): Impact factor 6.504
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.23 SJR 3.607 SNIP 2.467
Web of Science (2011): Impact factor 6.669
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 3.307 SNIP 2.234
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 3.25 SNIP 2.453
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 3.346 SNIP 2.259
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.39 SNIP 2.497
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 3.245 SNIP 2.397
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.829 SNIP 2.36
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.57 SNIP 2.45
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.664 SNIP 2.594
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.33 SNIP 2.549
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.283 SNIP 2.21
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.771 SNIP 2.185
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.799 SNIP 1.941
Original language: English
Source: orbit
Source-ID: 46099
Research output: Research - peer-review › Journal article – Annual report year: 2003