No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro

Graphene and graphene oxide receive much attention these years, because they add attractive properties to a wide range of applications and products. Several studies have shown toxicological effects of other carbon-based nanomaterials such as carbon black nanoparticles and carbon nanotubes in vitro and in vivo. Here, we report in-depth physicochemical characterization of three commercial graphene materials, one graphene oxide (GO) and two reduced graphene oxides (rGO) and assess cytotoxicity and genotoxicity in the murine lung epithelial cell line FE1. The studied GO and rGO mainly consisted of 2–3 graphene layers with lateral sizes of 1–2 µm. GO had almost equimolar content of C, O, and H while the two rGO materials had lower contents of oxygen with C/O and C/H ratios of 8 and 12.8, respectively. All materials had low levels of endotoxin and low levels of inorganic impurities, which were mainly sulphur, manganese, and silicon. GO generated more ROS than the two rGO materials, but none of the graphene materials influenced cytotoxicity in terms of cell viability and cell proliferation after 24 hr. Furthermore, no genotoxicity was observed using the alkaline comet assay following 3 or 24 hr of exposure. We demonstrate that chemically pure, few-layered GO and rGO with comparable lateral size (> 1 µm) do not induce significant cytotoxicity or genotoxicity in FE1 cells at relatively high doses (5–200 µg/ml).


General information

State: Published
Organisations: Department of Micro- and Nanotechnology, National Research Centre for the Working Environment, Graphenea, University of Grenoble
Number of pages: 14
Pages: 469-482
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Environmental and Molecular Mutagenesis
Volume: 57
Issue number: 6
ISSN (Print): 0893-6692
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.27 SJR 1.119 SNIP 0.858
Web of Science (2017): Impact factor 3.254
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.49 SJR 1.51 SNIP 0.987
Web of Science (2016): Impact factor 3.575
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.01 SJR 1.339 SNIP 0.914
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.44 SJR 0.948 SNIP 0.834
Web of Science (2014): Impact factor 2.63
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.1 SJR 1.218 SNIP 1.052
Web of Science (2013): Impact factor 2.553
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.46 SJR 1.413 SNIP 1.186
Web of Science (2012): Impact factor 3.708