New technologies for DNA analysis - DTU Orbit (31/12/2018)

New technologies for DNA analysis: a review of the READNA Project

The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3rd and 4th generation of sequencing methods with nanopores and in situ sequencing, respectively.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Optofluidics, Stochastic Systems and Signals, Centre National de Génotypage, University of Oxford, Comprehensive Biomarker Center GmbH, Damietta University, Clarendon Laboratory, Uppsala University, Christian Albrechts University of Kiel, Olink AB, University of Leicester, Chalmers University of Technology, Pompeu Fabra University, Stockholm University, Max Planck Institute for Molecular Genetics, FlexGen BV, French Alternative Energies and Atomic Energy Commission, Oxford Nanopore Technologies, Lund University, Philips Research, PHOTONIS France S.A.S., Thermo Fisher Scientific, Delft University of Technology, University of Southampton, University of Gothenburg
Number of pages: 20
Pages: 311-330
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: New Biotechnology
Volume: 33
Issue number: 3
ISSN (Print): 1871-6784
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.66 SJR 0.967 SNIP 1.14
Web of Science (2017): Impact factor 3.733
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.67 SJR 1.08 SNIP 1.262
Web of Science (2016): Impact factor 3.813
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.07 SJR 1.073 SNIP 1.055
Web of Science (2015): Impact factor 3.199
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.77 SJR 0.994 SNIP 1.237
Web of Science (2014): Impact factor 2.898
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.5 SJR 0.822 SNIP 0.966
Web of Science (2013): Impact factor 2.106
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1