New human milk fat substitutes from butterfat to improve fat absorption - DTU Orbit
(06/12/2018)

New human milk fat substitutes from butterfat to improve fat absorption
A new human milk fat substitute (HMFS) was produced from butterfat. A 2-week's feeding experiment was performed using three groups of rats with 10 wt.% fat in their feed; the fat was either (1) butterfat-based HMFS + long-chain polyunsaturated fatty acids (LCPUFA), (2) the reference oil + LCPUFA, or (3) the reference oil without LCPUFA. The apparent fat absorption after intake of butterfat-based HMFS (95.9% +/- 1.8%) was significantly higher than the other two groups, indicating that much less calcium soap was formed after feeding butterfat-based HMFS. Calcium contents in urines and faeces from the two groups fed LCPUFA in their diet were lower than those without supplementation of LCPUFA, suggesting that LCPUFA could improve calcium absorption by reducing the calcium excretion. It can thus be concluded that the butterfat-based HMFS improves fat absorption, and supplementation of LCPUFA in the formula improves calcium absorption.

General information
State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Analytical Chemistry, Department of Chemistry, Division of Toxicology and Risk Assessment, National Food Institute
Contributors: Li, Y., Mu, H., Andersen, J. E. T., Xu, X., Meyer, O. A., Orngreen, A.
Pages: 739-744
Publication date: 2010
Peer-reviewed: Yes

Publication information
Journal: Food Research International
Volume: 43
Issue number: 3
ISSN (Print): 0963-9969
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.9 SJR 1.472 SNIP 1.467
Web of Science (2017): Impact factor 3.52
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.87 SJR 1.612 SNIP 1.675
Web of Science (2016): Impact factor 3.086
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.66 SJR 1.508 SNIP 1.629
Web of Science (2015): Impact factor 3.182
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.52 SJR 1.487 SNIP 1.751
Web of Science (2014): Impact factor 2.818
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.68 SJR 1.526 SNIP 1.802
Web of Science (2013): Impact factor 3.05
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.31 SJR 1.563 SNIP 1.775
Web of Science (2012): Impact factor 3.005
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.42 SJR 1.521 SNIP 1.697