Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity - DTU Orbit (24/12/2018)

Neural mechanism of activity spread in the cat motor cortex and its relation to the intrinsic connectivity

NON TECHNICAL SUMMARY: The motor cortex (MCx) is an important brain region that initiates and controls voluntary movements. Neurons in MCx are anatomically connected by recurrent (feedback) networks. This connectivity pattern allows neurons to communicate reciprocally with each other potentially over distances of 6–7 mm. However, how far such neural activity is actually communicated was not known. We found that the activity of a small cortical point, about 0.4 mm in radius, activates a surrounding territory of approximately 7.22 mm² in area. This is smaller than the area covered by the anatomical connections, indicating the existence of mechanisms that limit the spread of activity. Nonetheless, such an area contains the representations of a variety of muscles spanning several joints, from digits to shoulder. These results support the hypothesis that the MCx controls the forelimb musculature in small synergistic groups, rather than singly and separately. Understanding motor cortical physiology is important for the design of neuro-prosthesis to interface the brain to paralyzed muscles. **ABSTRACT**: Motor cortical points are linked by intrinsic horizontal connections having a recurrent network topology. However, it is not known whether neural activity can propagate over the area covered by these intrinsic connections and whether there are spatial anisotropies of synaptic strength, as opposed to synaptic density. Moreover, the mechanisms by which activity spreads have yet to be determined. To address these issues, an 8 x 8 microelectrode array was inserted in the forelimb area of the cat motor cortex (MCx). The centre of the array had a laser etched hole ~500 (μm) in diameter. A microiontophoretic pipette, with a tip diameter of 2–3 (μm), containing bicuculline methiodide (BIC) was inserted in the hole and driven to a depth of 1200–1400 (μm) from the cortical surface. BIC was ejected for ~2 min from the tip of the micropipette with positive direct current ranging between 20 and 40 nA in different experiments. This produced spontaneous nearly periodic bursts (0.2–1.0 Hz) of multi-unit activity in a radius of about 400 (μm) from the tip of the micropipette. The bursts of neural activity spread at a velocity of 0.11–0.24 m s⁻¹ (mean = 0.14 mm ms⁻¹, SD = 0.05) with decreasing amplitude. The area activated was on average 7.22 mm² (SD = 0.91 mm²), or ~92% of the area covered by the recording array. The mode of propagation was determined to occur by progressive recruitment of cortical territory, driven by a central locus of activity of some 400 (μm) in radius. Thus, activity did not propagate as a wave. Transection of the connections between the thalamus and MCx did not significantly alter the propagation velocity or the size of the recruited area, demonstrating that the bursts spread along the routes of intrinsic cortical connectivity. These experiments demonstrate that neural activity initiated within a small motor cortical locus (∼400 (μm) in radius) can recruit a relatively large neighbourhood in which a variety of muscles acting at several forelimb joints are represented. These results support the hypothesis that the MCx controls the forelimb musculature in an integrated and anticipatory manner based on a recurrent network topology.

General information

State: Published

Organisations: Department of Electrical Engineering, Biomedical Engineering, Paris Descartes University, Northwestern University, University of Pittsburgh

Pages: 2515-2528

Publication date: 2011

Peer-reviewed: Yes

Publication Information

Journal: Journal of Physiology

Volume: 589

Issue number: 10

ISSN (Print): 0022-3751

Ratings:

BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.44 SJR 2.051 SNIP 1.132
Web of Science (2017): Impact factor 4.54
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.51 SJR 2.192 SNIP 1.267
Web of Science (2016): Impact factor 4.739
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.8 SJR 2.697 SNIP 1.397
Web of Science (2015): Impact factor 4.731
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.73 SJR 2.777 SNIP 1.525
Web of Science (2014): Impact factor 5.037
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.74 SJR 2.737 SNIP 1.604
Web of Science (2013): Impact factor 4.544
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.79 SJR 2.598 SNIP 1.503
Web of Science (2012): Impact factor 4.38
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4 SJR 2.738 SNIP 1.504
Web of Science (2011): Impact factor 4.881
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.829 SNIP 1.388
Web of Science (2010): Impact factor 5.139
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.932 SNIP 1.359
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.879 SNIP 1.334
Scopus rating (2007): SJR 2.68 SNIP 1.422
Scopus rating (2006): SJR 2.717 SNIP 1.484
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.519 SNIP 1.361
Scopus rating (2004): SJR 2.594 SNIP 1.384
Scopus rating (2003): SJR 2.567 SNIP 1.38
Scopus rating (2002): SJR 2.531 SNIP 1.518
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.257 SNIP 1.415
Scopus rating (2000): SJR 2.676 SNIP 1.452
Scopus rating (1999): SJR 2.727 SNIP 1.427
Original language: English
DOIs:
10.1113/jphysiol.2011.206938
Source: orbit
Source-ID: 276780
Research output: Research - peer-review > Journal article – Annual report year: 2011