Nanoscale zero-valent iron impregnation of covalent organic polymer grafted activated carbon for water treatment

Publication: Research - peer-reviewConference abstract in proceedings – Annual report year: 2016

Documents

View graph of relations

The use of nanoscale zero valent iron (nZVI) has quickly become a leading research material for the treatment of typically hard to degrade contaminants found in groundwater. These contaminants include antibiotics, pesticides, halogenated organics, heavy metals, among others. However, the effectiveness of nZVI has its limitations, due to its high reactivity and subsequent loss of degradative ability. Therefore, nZVI must be stabilized in a matrix allowing for the maintaining of reactivity, as well as the protection from the effects of the surrounding environment.

By employing a nanoporous polymeric network already previously proven to stabilize nZVI and a long-standing water treatment material,1 activated carbon; we have developed an advanced material that allows for the not only the stabilization of nZVI, but also the improved degradation of various water contaminants. This was done by performing a series of surface modification techniques to the surface of the activated carbon, then physically grafting the covalent organic polymer to the carbon in a shell-like manner, and ultimately synthesizing nZVI in situ within the pores of both the activated carbon and the polymeric network. Not only does this enhanced version of activated carbon utilize the outstanding adsorptive properties of both activated carbon and the polymeric network, but it also employs the degradation capability of nZVI. In this way, a new breed of materials is being developed, working in a synergistic manner for the purpose of the remediation of contaminants found in the groundwater.

We confirmed the existence of the polymeric shell with a variety of chemical characterization techniques; including Fourier transform infrared spectroscopy (FTIR), elemental analysis, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). We also monitored the degradation and/or adsorption of various contaminants (e.g. chlorinated organics like trichloroethylene and trichloroethane, and heavy metals like cadmium and nickel) to produce the kinetics of the interactions.
Original languageEnglish
Title of host publication11th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials (ICEENN 2016) : Abstract program
Place of PublicationColorado, USA
Publication date2016
Pages106-106
StatePublished - 2016
Event11th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials - Golden, United States

Conference

Conference11th International Conference on the Environmental Effects of Nanoparticles and Nanomaterials
Number11
CountryUnited States
CityGolden
Period14/08/201618/08/2016
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 126029935