Nanophotonic Control of the Förster Resonance Energy Transfer Efficiency

Publication: Research - peer-reviewJournal article – Annual report year: 2012

Documents

DOI

View graph of relations

We have studied the influence of the local density of optical states (LDOS) on the rate and efficiency of Forster resonance energy transfer (FRET) from a donor to an acceptor. The donors and acceptors are dye molecules that are separated by a short strand of double-stranded DNA. The LDOS is controlled by carefully positioning the FRET pairs near a mirror. We find that the energy transfer efficiency changes with LDOS, and that, in agreement with theory, the energy transfer rate is independent of the LDOS, which allows one to quantitatively control FRET systems in a new way. Our results imply a change in the characteristic Forster distance, in contrast to common lore that this distance is fixed for a given FRET pair.
Original languageEnglish
JournalPhysical Review Letters
Publication date2012
Volume109
Issue20
Pages203601
Number of pages5
ISSN0031-9007
DOIs
StatePublished

Bibliographical note

Copyright (2012) American Physical Society.

CitationsWeb of Science® Times Cited: 16
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 30917227