Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials - DTU Orbit (10/02/2019)

Nanomechanical IR spectroscopy for fast analysis of liquid-dispersed engineered nanomaterials

The proliferated use of engineered nanomaterials (ENMs), e.g. in nanomedicine, calls for novel techniques allowing for fast and sensitive analysis of minute samples. Here we present nanomechanical IR spectroscopy (NAM-IR) for chemical analysis of picograms of ENMs. ENMs are nebulized directly from dispersion and efficiently collected on nanomechanical string resonators through a non-diffusion limited sampling method. Even very small amounts of sample can convert absorbed IR light into a measurable frequency detuning of the string through photothermal heating. An IR absorption spectrum is thus readily obtained by recording this detuning of the resonator over a range of IR wavelengths. Results recorded using NAM-IR agree well with corresponding results obtained through ATR-FTIR, and remarkably, measurement including sample preparation takes only a few minutes, compared to ~2 days sample preparation for ATR-FTIR. Resonator dimensions play an important role in NAM-IR, a relationship which will be elaborated here.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Nanoprobes, Colloids and Biological Interfaces, Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics
Contributors: Andersen, A. J., Yamada, S., Ek, P. K., Andresen, T. L., Boisen, A., Schmid, S.
Number of pages: 7
Pages: 667-673
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Sensors and Actuators B: Chemical
Volume: 233
ISSN (Print): 0925-4005
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 5.67 SJR 1.406 SNIP 1.453
Web of Science (2017): Impact factor 5.667
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 5.07 SJR 1.343 SNIP 1.464
Web of Science (2016): Impact factor 5.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.84 SJR 1.225 SNIP 1.484
Web of Science (2015): Impact factor 4.758
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.37 SJR 1.229 SNIP 1.658
Web of Science (2014): Impact factor 4.097
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.25 SJR 1.261 SNIP 1.638
Web of Science (2013): Impact factor 3.84
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.92 SJR 1.412 SNIP 1.674
Web of Science (2012): Impact factor 3.535
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes