Nanoimprinted DWDM laser arrays on indium phosphide substrates
(29/03/2019)

Nanoimprinted DWDM laser arrays on indium phosphide substrates

Dense wavelength division multiplexing lasers play a major role in today's long-haul broadband communication. Typical distributed feedback laser cavities consist of long half-pitch gratings in InGaAsP on InP substrates with grating periods of around 240 nm. The lasers include a quarter wavelength shift in the grating, and are single mode with high side-mode suppression. Typically, such lasers are patterned using e-beam lithography (EBL). We present a fabrication method based on patterning by thermal nanoimprint lithography, which is potentially less costly and faster than EBL. Thermal nanoimprint lithography of laser gratings raises two types of challenges: (1) The imprint process itself is delicate due to the mechanical fragility of indium phosphide substrates and the thermal mismatch between the substrate and the silicon stamp. (2) The subsequent processing puts requirements on the imprint resist thickness after patterning, and the alignment between the crystallographic direction of the substrate and the grating pattern. Working laser arrays were produced, with >40 mW optical power and side mode suppression ratios of more than 50 dB in all 12 channels.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Optofluidics, Nanoprobes, Silicon Microtechnology, NIL Technology ApS, NeoPhotonics Corporation
Pages: 149-153
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: Microelectronic Engineering
Volume: 126
ISSN (Print): 0167-9317
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.87 SJR 0.604 SNIP 0.937
Web of Science (2017): Impact factor 2.02
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.69 SJR 0.589 SNIP 0.949
Web of Science (2016): Impact factor 1.806
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.35 SJR 0.507 SNIP 0.796
Web of Science (2015): Impact factor 1.277
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.44 SJR 0.586 SNIP 0.86
Web of Science (2014): Impact factor 1.197
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.45 SJR 0.595 SNIP 0.964
Web of Science (2013): Impact factor 1.338
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.44 SJR 0.737 SNIP 0.949
Web of Science (2012): Impact factor 1.224
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.8 SJR 0.813 SNIP 1.148
Web of Science (2011): Impact factor 1.557
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 0.934 SNIP 1.093
Web of Science (2010): Impact factor 1.575
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.834 SNIP 1.098
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.027 SNIP 1.06
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.045 SNIP 1.138
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.966 SNIP 1.093
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.952 SNIP 0.989
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1 SNIP 1.1
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.812 SNIP 0.956
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.712 SNIP 0.711
Scopus rating (2001): SJR 0.558 SNIP 0.645
Scopus rating (2000): SJR 0.502 SNIP 0.568
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.595 SNIP 0.555
Original language: English
Keywords: Nanoimprint lithography, Process integration, Distributed feedback lasers, DFB, Dense wavelength division multiplexing, D-WDM
DOIs: 10.1016/j.mee.2014.07.004
Source: Findit
Source-ID: 2200943498
Research output: Research - peer-review › Journal article – Annual report year: 2014