Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues - DTU Orbit (23/12/2018)

Mutational properties of amino acid residues: implications for evolvability of phosphorylatable residues

As François Jacob pointed out over 30 years ago, evolution is a tinkering process, and, as such, relies on the genetic diversity produced by mutation subsequently shaped by Darwinian selection. However, there is one implicit assumption that is made when studying this tinkering process; it is typically assumed that all amino acid residues are equally likely to mutate or to result from a mutation. Here, by reconstructing ancestral sequences and computing mutational probabilities for all the amino acid residues, we refute this assumption and show extensive inequalities between different residues in terms of their mutational activity. Moreover, we highlight the importance of the genetic code and physico-chemical properties of the amino acid residues as likely causes of these inequalities and uncover serine as a mutational hot spot.

Finally, we explore the consequences that these different mutational properties have on phosphorylation site evolution, showing that a higher degree of evolvability exists for phosphorylated threonine and, to a lesser extent, serine in comparison with tyrosine residues. As exemplified by the suppression of serine's mutational activity in phosphorylation sites, our results suggest that the cell can fine-tune the mutational activities of amino acid residues when they reside in functional protein regions.

General information

State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, Austrian Academy of Sciences
Contributors: Creixell, P., Schoof, E. M., Tan, C. S. H., Linding, R.
Pages: 2584-2593
Publication date: 2012
Peer-reviewed: Yes

Publication information

Journal: Philosophical Transactions of the Royal Society B: Biological Sciences
Volume: 367
Issue number: 1602
ISSN (Print): 0962-8436
Ratings:
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 5.52 SJR 3.306 SNIP 1.59
- Web of Science (2017): Impact factor 5.666
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 3.61 SJR 3.144 SNIP 1.467
- Web of Science (2016): Impact factor 5.846
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 4.03 SJR 3.508 SNIP 1.587
- Web of Science (2015): Impact factor 5.847
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 4.82 SJR 3.452 SNIP 1.968
- Web of Science (2014): Impact factor 7.055
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 2
- Scopus rating (2013): CiteScore 6.77 SJR 3.81 SNIP 2.226
- Web of Science (2013): Impact factor 6.314
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 2
- Scopus rating (2012): CiteScore 6.52 SJR 3.575 SNIP 2.278
- Web of Science (2012): Impact factor 6.23
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 2
<table>
<thead>
<tr>
<th>Year</th>
<th>Scopus Rating (SJR)</th>
<th>Scopus Rating (SNIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>3.82</td>
<td>2.263</td>
</tr>
<tr>
<td>2010</td>
<td>3.278</td>
<td>1.856</td>
</tr>
<tr>
<td>2009</td>
<td>3.348</td>
<td>1.698</td>
</tr>
<tr>
<td>2008</td>
<td>3.556</td>
<td>1.904</td>
</tr>
<tr>
<td>2007</td>
<td>3.27</td>
<td>1.777</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Scopus Rating (SJR)</th>
<th>Scopus Rating (SNIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2.72</td>
<td>1.69</td>
</tr>
<tr>
<td>2005</td>
<td>3.225</td>
<td>1.526</td>
</tr>
<tr>
<td>2004</td>
<td>2.845</td>
<td>1.289</td>
</tr>
<tr>
<td>2003</td>
<td>2.374</td>
<td>1.19</td>
</tr>
<tr>
<td>2002</td>
<td>2.087</td>
<td>1.143</td>
</tr>
<tr>
<td>2001</td>
<td>2.287</td>
<td>1.26</td>
</tr>
<tr>
<td>2000</td>
<td>2.326</td>
<td>1.557</td>
</tr>
<tr>
<td>1999</td>
<td>2.466</td>
<td>1.463</td>
</tr>
</tbody>
</table>

Original Language: English

Keywords: amino acid evolvability, mutation, phosphorylation site evolution

DOIs:

10.1098/rstb.2012.0076

Source: dtu

Source-ID: n::oai:DTIC-ART:highwire/367815040::18727

Research output: Research - peer-review ; Journal article – Annual report year: 2012