Multispectral Image Analysis for Robust Prediction of Astaxanthin Coating - DTU Orbit
(06/02/2019)

Multispectral Image Analysis for Robust Prediction of Astaxanthin Coating

The aim of this study was to investigate the possibility of predicting the type and concentration level of astaxanthin coating of aquaculture feed pellets using multispectral image analysis. We used both natural and synthetic astaxanthin, and we used several different concentration levels of synthetic astaxanthin in combination with four different recipes of feed pellets. We used a VideometerLab with 20 spectral bands in the range of 385-1050 nm. We used linear discriminant analysis and sparse linear discriminant analysis for classification and variable selection. We used partial least squares regression (PLSR) for prediction of the concentration level. The results show that it is possible to predict the level of synthetic astaxanthin coating using PLSR on either the same recipe, or when calibrating on all recipes. The concentration prediction is adequate for screening for all recipes. Moreover, it shows that it is possible to predict the type of astaxanthin used in the coating using only ten spectral bands. Finally, the most selected spectral bands for astaxanthin prediction are in the visible range of the spectrum.

General information

State: Published
Organisations: Department of Applied Mathematics and Computer Science, National Food Institute, Division of Industrial Food Research, Division of Toxicology and Risk Assessment, Statistics and Data Analysis
Contributors: Ljungqvist, M. G., Frosch, S., Nielsen, M. E., Ersbøll, B. K.
Pages: 738-746
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Applied Spectroscopy
Volume: 67
Issue number: 7
ISSN (Print): 0003-7028
Ratings:
- BFI (2019): BFI-level 1
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.6 SJR 0.489 SNIP 0.867
- Web of Science (2017): Impact factor 1.642
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.76 SJR 0.486 SNIP 0.964
- Web of Science (2016): Impact factor 1.529
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.96 SJR 0.64 SNIP 1.066
- Web of Science (2015): Impact factor 1.798
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.96 SJR 0.633 SNIP 1.054
- Web of Science (2014): Impact factor 1.875
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.08 SJR 0.641 SNIP 1.144
- Web of Science (2013): Impact factor 2.014
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 1.81 SJR 0.574 SNIP 1.088
- Web of Science (2012): Impact factor 1.942
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.62 SJR 0.609 SNIP 1.011
Web of Science (2011): Impact factor 1.663
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.695 SNIP 0.977
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.635 SNIP 0.892
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.864 SNIP 1.076
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.782 SNIP 0.957
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.816 SNIP 1.002
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.888 SNIP 1.125
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.871 SNIP 1.012
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.922 SNIP 1.169
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.849 SNIP 1.109
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.903 SNIP 1.201
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.302 SNIP 1.189
Scopus rating (1999): SJR 1.294 SNIP 1.165

Original language: English
Keywords: Multispectral, Image analysis, Spectral imaging, NIR, Astaxanthin, Fish feed, Coating
Electronic versions:
Multispectral Image Analysis for Robust Prediction of Astaxanthin Coating AS 2013.pdf
DOIs: 10.1366/12-06823

Bibliographical note
This paper was published in Applied Spectroscopy and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/as/abstract.cfm?URI=as-67-7-738. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Source: dtu
Source-ID: u::7980
Research output: Research - peer-review ; Journal article – Annual report year: 2013