Multi-scale magnetic nanoparticle based optomagnetic bioassay for sensitive DNA and bacteria detection

Multi-scale magnetic nanoparticle based optomagnetic bioassay for sensitive DNA and bacteria detection

Benefiting from their rapid readout, highly flexible devices and low-cost portable systems, optomagnetic biosensors have drawn increased attention in recent years as bioassay technologies for small molecules, biomarkers, DNA, and bacteria. Herein, an optomagnetic bioassay strategy suitable for point-of-care diagnostics, utilizing functionalized magnetic nanoparticles (100 nm) with Brownian relaxation behavior is optimized in order to obtain higher detection sensitivity for DNA molecules and bacteria. Presence of target DNA sequences or bacteria changes the dynamic behavior of the magnetic nanoparticles (binding to the target) and thus the optomagnetic response of the sample, which is measured by an optomagnetic setup including a 405 nm laser and a photodetector. The limit of detection is mainly set by the lowest measurable concentration of magnetic nanoparticles. Herein, as new results compared to previous work, we systematically optimize the concentration of 100 nm magnetic nanoparticles to increase the assay sensitivity and lower the limit of detection. To enable biplex detection, we perform this optimization in the presence of larger 250 nm magnetic nanoparticles that do not interact with the target. We show that the optimization and lowering of the 100 nm magnetic nanoparticle concentration result in a limit of detection of 780 fM of DNA coils formed by rolling circle amplification (size of about 1 μm) and 10^5 CFU per mL Salmonella (for immunoassay). These values are 15 times lower than those reported previously for this readout principle. Finally, we show that the 250 nm magnetic nanoparticles can serve as a second detection label for qualitative biplex detection of DNA coils formed by rolling circle amplification from V. cholerae and E. coli DNA coils using 100 nm and 250 nm magnetic detection nanoparticles, respectively.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Magnetic Systems, Uppsala University
Contributors: Tian, B., Zardán Gómez De La Torre, T., Donolato, M., Hansen, M. F., Svedlindh, P., Strömberg, M.
Number of pages: 8
Pages: 5009-5016
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Analytical Methods
Volume: 8
Issue number: 25
ISSN (Print): 1759-9660
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.11 SJR 0.619 SNIP 0.628
Web of Science (2017): Impact factor 2.073
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.99 SJR 0.595 SNIP 0.627
Web of Science (2016): Impact factor 1.9
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.98 SJR 0.593 SNIP 0.64
Web of Science (2015): Impact factor 1.915
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.91 SJR 0.61 SNIP 0.653
Web of Science (2014): Impact factor 1.821
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.96 SJR 0.612 SNIP 0.69
Web of Science (2013): Impact factor 1.938
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes