Multiscale 3D characterization with dark-field x-ray microscopy - DTU Orbit (23/10/2018)

Multiscale 3D characterization with dark-field x-ray microscopy

Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x-rays means that these features can be large, deeply embedded, and fully mapped in seconds to minutes. Simple reconfiguration of the x-ray objective lens allows intuitive zooming between different scales down to a spatial and angular resolution of 100 nm and 0.001 degrees, respectively. Three applications of the technique are presented—mapping the evolution of subgrains during the processing of plastically deformed aluminum, mapping domains and strain fields in ferroelectric crystals, and the three-dimensional mapping of strain fields around individual dislocations. This ability to directly characterize complex, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials.

General information
State: Published
Organisations: Department of Physics, Neutrons and X-rays for Materials Physics, European Synchrotron Radiation Facility
Number of pages: 6
Pages: 454-459
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Mrs Bulletin
Volume: 41
Issue number: 6
ISSN (Print): 0883-7694
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.19 SJR 1.974 SNIP 1.559
Web of Science (2017): Impact factor 4.788
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.2 SJR 2.197 SNIP 1.613
Web of Science (2016): Impact factor 5.199
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.68 SJR 2.6 SNIP 2.143
Web of Science (2015): Impact factor 6.06
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.61 SJR 2.048 SNIP 1.943
Web of Science (2014): Impact factor 5.667
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3 SJR 2 SNIP 1.581
Web of Science (2013): Impact factor 5.069
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.04 SJR 2.12 SNIP 1.917
Web of Science (2012): Impact factor 5.024
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.29 SJR 2.138 SNIP 1.921
Web of Science (2011): Impact factor 4.95
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1