Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 µm range with 85 fs 50 µJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 µm. We measured up 30 µJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

General information
State: Published
Organisations: Department of Photonics Engineering, Terahertz Science & Technology
Contributors: Zhou, B., Bache, M.
Number of pages: 12
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: APL Photonics
Volume: 1
Issue number: 5
Article number: 050802
ISSN (Print): 2378-0967
Ratings:
Web of Science (2019): Indexed yes
Web of Science (2018): Indexed yes
Web of Science (2017): Indexed yes
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
1.4953177.pdf
DOIs:
10.1063/1.4953177

Bibliographical note
C 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license.
Source: PublicationPreSubmission
Source-ID: 124242576
Research output: Research - peer-review > Journal article – Annual report year: 2016