Multiple blocking sets in PG(n,q), n>=3.

Publication: Research - peer-reviewJournal article – Annual report year: 2004

View graph of relations

This article discusses minimal s-fold blocking sets B in PG (n, q), q = ph, p prime, q > 661, n > 3, of size |B| > sq + cp q2/3 - (s - 1) (s - 2)/2 (s > min (cp q1/6, q1/4/2)). It is shown that these s-fold blocking sets contain the disjoint union of a collection of s lines and/or Baer subplanes. To obtain these results, we extend results of Blokhuis–Storme–Szönyi on s-fold blocking sets in PG(2, q) to s-fold blocking sets having points to which a multiplicity is given. Then the results in PG(n, q), n ≥ 3, are obtained using projection arguments. The results of this article also improve results of Hamada and Helleseth on codes meeting the Griesmer bound.
Original languageEnglish
JournalDesigns, Codes and Cryptography
Publication date2004
Volume33
Issue1
Pages5-21
ISSN0925-1022
StatePublished
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 2671108