Multi-omic data integration enables discovery of hidden biological regularities (28/12/2018)

Multi-omic data integration enables discovery of hidden biological regularities

Rapid growth in size and complexity of biological data sets has led to the 'Big Data to Knowledge' challenge. We develop advanced data integration methods for multi-level analysis of genomic, transcriptomic, ribosomal profiling, proteomic and fluxomic data. First, we show that pairwise integration of primary omics data reveals regularities that tie cellular processes together in *Escherichia coli*: the number of protein molecules made per mRNA transcript and the number of ribosomes required per translated protein molecule. Second, we show that genome-scale models, based on genomic and bibliomic data, enable quantitative synchronization of disparate data types. Integrating omics data with models enabled the discovery of two novel regularities: condition invariant *in vivo* turnover rates of enzymes and the correlation of protein structural motifs and translational pausing. These regularities can be formally represented in a computable format allowing for coherent interpretation and prediction of fitness and selection that underlies cellular physiology.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, iLoop, Network Reconstruction in Silico Biology, Big Data 2 Knowledge, University of California
Number of pages: 9
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Nature Communications
Volume: 7
Article number: 13091
ISSN (Print): 2041-1723
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 12.41 SJR 6.582 SNIP 2.912
Web of Science (2017): Impact factor 12.353
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 11.8 SJR 6.414 SNIP 2.855
Web of Science (2016): Impact factor 12.124
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 11.23 SJR 6.287 SNIP 2.86
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 10.77 SJR 6.41 SJNIP 3.034
Web of Science (2014): Impact factor 11.47
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 9.85 SJR 6.206 SNIP 2.797
Web of Science (2013): Impact factor 10.742
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Scopus rating (2012): CiteScore 8.32 SJR 5.866 SNIP 2.829
Web of Science (2012): Impact factor 10.015
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
Scopus rating (2011): CiteScore 4.44 SJR 3.137 SNIP 1.825
Web of Science (2011): Impact factor 7.396