Multifunctional fiber-optic microwave links based on remote heterodyne detection

Publication: Research - peer-reviewJournal article – Annual report year: 1998



View graph of relations

The multifunctionality of microwave links based on remote heterodyne detection (RHD) of signals from a dual-frequency laser transmitter is discussed and experimentally demonstrated in this paper. Typically, direct detection (DD) in conjunction with optical intensity modulation is used to implement fiber-optic microwave links. The resulting links are inherently transparent. As opposed to DD links, RHD links can perform radio-system functionalities such as modulation and frequency conversion in addition to transparency. All of these three functionalities are presented and experimentally demonstrated with an RHD link based on a dual-frequency laser transmitter with two offset phase-locked semiconductor lasers. In the modulating link, a 1-Gb/s baseband signal is QPSK modulated onto a 9-GHz RF carrier. The frequency converting link demonstrates up-conversion of a 100-Mb/s PSK signal from a 2-GHz carrier to a 9-GHz carrier with penalty-free transmission over 25 km of optical fiber. Finally, the transparent link transmits a standard FM video 7.6-GHz radio-link signal over 25 km of optical fiber without measurable distortion
Original languageEnglish
JournalI E E E Transactions on Microwave Theory and Techniques
Issue number5
Pages (from-to)458-468
StatePublished - 1998

Bibliographical note

Copyright: 1998 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

CitationsWeb of Science® Times Cited: 55
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 4381659