Mosquito inspired medical needles

Mosquito inspired medical needles

The stinging proboscis in mosquitos have diameters of only 40-100 μm which is much less than the thinnest medical needles and the mechanics of these natural stinging mechanisms have therefore attracted attention amongst developers of injection devises. The mosquito use a range of different strategies to lower the required penetration force hence allowing a thinner and less stiff proboscis structure. Earlier studies of the mosquito proboscis insertion strategies have shown how each of the single strategies reduces the required penetration force. The present paper gives an overview of the advanced set of mechanisms that allow the mosquito to penetrate human skin and also presents other biological mechanisms that facilitate skin penetration. Results from experiments in a skin mimic using biomimetic equivalents to the natural mechanisms are presented. This includes skin stretching, insertion speed and vibration. Combining slow insertion speed with skin tension and slow vibration reduces the penetration force with 40%

General information
State: Published
Organisations: Department of Mechanical Engineering, Engineering Design and Product Development, Technical University of Denmark, University of Oxford
Contributors: Lenau, T. A., Hesselberg, T., Drakidis, A. D., Silva, P., Gomes, S.
Number of pages: 13
Publication date: 2017

Host publication information
Title of host publication: SPIE Conference on Bioinspiration, Biomimetics, and Bioreplication 2017
Volume: 10162
Publisher: SPIE - International Society for Optical Engineering
Editors: Knez, M., Lakhtakia, A., Martín-Palma, R. J.
Article number: 1016208
ISBN (Electronic): 9781510608092
Electronic versions: 1016208.pdf
DOIs: 10.1117/12.2261399
Research output: Research - peer-review > Article in proceedings – Annual report year: 2017