Moisture-induced stresses in glulam frames

Wood is a hygroscopic and moisture-sensitive material that seeks to achieve equilibrium moisture content (EMC) with its surrounding environment. For softwood timber structures exposed to variations in climate throughout their service life, this behaviour results in variable moisture-content gradients that cause moisture-induced stresses in the direction of and perpendicular to the fibres. Although Eurocode 5 (EC5) states that moisture-induced stresses should be considered, they are often not adequately dealt with in building design due to the difficulties in predicting the stresses involved by hand. Accordingly, there is a need for advanced computer tools to study how the long-term stress behaviour of timber structures is affected by creep and cyclic variations in climate. A beam model to simulate the overall hygro-mechanical and visco-elastic behaviour of (inhomogeneous) glulam structures is presented. A two-dimensional transient, non-linear moisture transport model for wood is also developed and linked with this beam model. The combined models are used to study the long-term deformations and stresses in a curved frame structure exposed to both mechanical loading and cyclic climate conditions. It is shown that the moisture-induced deformations and stresses are of such magnitude that the design codes employed should take them into account. Thus it is argued that climate-related loads should be treated as separate load contributions that can be included in different load combinations.