Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment

Modulation of Frequency Doubled DFB-Tapered Diode Lasers for Medical Treatment
The use of visible lasers for medical treatments is on the rise, and together with this comes higher expectations for the laser systems. For many medical treatments, such as ophthalmology, doctors require pulse on demand operation together with a complete extinction of the light between pulses. We have demonstrated power modulation from 0.1 Hz to 10 kHz at 532 nm with a modulation depth above 97% by wavelength detuning of the laser diode. The laser diode is a 1064 nm monolithic device with a distributed feedback (DFB) laser as the master oscillator (MO), and a tapered power amplifier (PA). The MO and PA have separate electrical contacts and the modulation is achieved with wavelength tuning by adjusting the current through the MO 40 mA.

General information
State: Published
Organisations: Department of Photonics Engineering, Diode Lasers and LED Systems, Norlase ApS
Contributors: Christensen, M., Hansen, A. K., Noordegraaf, D., Jensen, O. B., Skovgaard, P. M. W.
Number of pages: 6
Publication date: 2017

Host publication information
Title of host publication: Proceedings of SPIE
Volume: 10088
Publisher: SPIE - International Society for Optical Engineering
Article number: 100881A
Keywords: Visible lasers, Distributed feedback lasers, Frequency doubled lasers, Pulsed lasers
Electronic versions:
Modulation_of_frequency_doubled_DFB_tapered_diode_lasers_for_medical_treatment_PUBLISHED.pdf
DOIs:
10.1117/12.2250337

Bibliographical note
Copyright 2017 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Research output: Research - peer-review > Article in proceedings – Annual report year: 2017