Modelling atmospheric OH-reactivity in a boreal forest ecosystem

We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined as well as the vertical OH-reactivity profile. We have used SOSA; a one dimensional vertical chemistry-transport model (Boy et al., 2011) together with measurements from Hyytiälä, SMEAR II station, Southern Finland, conducted in August 2008. Model simulations only account for ~30–50% of the total measured OH sink, and in our opinion, the reason for missing OH-reactivity is due to unmeasured unknown BVOCs, and limitations in our knowledge of atmospheric chemistry including uncertainties in rate constants. Furthermore, we found that the OH-reactivity correlates with both organic and inorganic compounds and increases during summer. The summertime canopy level OH-reactivity peaks during night and the vertical OH-reactivity decreases with height.

General information
State: Published
Organisations: Meteorology, Wind Energy Division, Risø National Laboratory for Sustainable Energy, University of Helsinki, Indian Institute of Science Education and Research, National Center for Atmospheric Research, Max Planck Institute
Pages: 9133-9163
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Atmospheric Chemistry and Physics Discussions
Volume: 11
Issue number: 3
ISSN (Print): 1680-7367
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
BFI (2016): BFI-level 1
BFI (2015): BFI-level 1
BFI (2014): BFI-level 1
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
BFI (2012): BFI-level 1
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
BFI (2009): BFI-level 1
BFI (2008): BFI-level 1
Original language: English
Keywords: Wind power meteorology
Electronic versions:
0BD3Cd01.pdf
DOIs:
10.5194/acpd-11-9133-2011

Bibliographical note
This work is distributed under the Creative Commons Attribution 3.0 License.

The discussion paper has a corresponding peer-reviewed final revised paper in the journal Atmospheric Chemistry and Physics (ACP): http://dx.doi.org/10.5194/acp-11-9709-2011
Source: orbit
Source-ID: 276570
Research output: Research - peer-review; Journal article – Annual report year: 2011