Modeling the Growth of Listeria monocytogenes in Soft Blue-White Cheese - DTU Orbit (11/11/2018)

Modeling the Growth of Listeria monocytogenes in Soft Blue-White Cheese

The aim of this study was to develop a predictive model simulating growth over time of the pathogenic bacterium Listeria monocytogenes in a soft blue-white cheese. The physicochemical properties in a matrix such as cheese are essential controlling factors influencing the growth of L. monocytogenes. We developed a predictive tertiary model of the bacterial growth of L. monocytogenes as a function of temperature, pH, NaCl, and lactic acid. We measured the variations over time of the physicochemical properties in the cheese. Our predictive model was developed based on broth data produced in previous studies. New growth data sets were produced to independently calibrate and validate the developed model. A characteristic of this tertiary model is that it handles dynamic growth conditions described in time series of temperature, pH, NaCl, and lactic acid. Supplying the model with realistic production and retail conditions showed that the number of L. monocytogenes cells increases 3 to 3.5 log within the shelf life of the cheese.

General information
State: Published
Organisations: DHI Denmark, University of Copenhagen
Contributors: Rosshaug, P. S., Detmer, A., Ingmer, H., Larsen, M. H.
Pages: 8508-8514
Publication date: 2012
Peer-reviewed: Yes

Publication Information
Journal: Applied and Environmental Microbiology
Volume: 78
Issue number: 24
ISSN (Print): 0099-2240
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.99
Web of Science (2017): Impact factor 3.633
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.08
Web of Science (2016): Impact factor 3.807
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.14 SJR 1.891 SNIP 1.308
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.02 SJR 1.857 SNIP 1.384
Web of Science (2014): Impact factor 3.668
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.25 SJR 1.899 SNIP 1.414
Web of Science (2013): Impact factor 3.952
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.29 SJR 1.975 SNIP 1.429
Web of Science (2012): Impact factor 3.678
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.12 SJR 1.914 SNIP 1.455
Web of Science (2011): Impact factor 3.829
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.887 SNIP 1.436
Web of Science (2010): Impact factor 3.778
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.972 SNIP 1.528
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.156 SNIP 1.572
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.043 SNIP 1.647
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 2.054 SNIP 1.602
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.074 SNIP 1.653
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 2.108 SNIP 1.648
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 2.097 SNIP 1.821
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 2.046 SNIP 1.754
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.989 SNIP 1.736
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.957 SNIP 1.758
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.3 SNIP 1.732
Original language: English
DOIs: 10.1128/AEM.01865-12
Source: dtu
Source-ID: n:oai:DTIC-ART:highwire/374072283::21791
Research output: Research - peer-review | Journal article – Annual report year: 2012