Modeling of Dissolution Effects on Waterflooding

Physico-chemical interactions between the fluid and reservoir rock due to the presence of active components in the injected brine produce changes within the reservoir and can significantly impact the fluid flow. We have developed a 1D numerical model for waterflooding accounting for dissolution and precipitation of the components. Extending previous studies, we consider an arbitrary chemical non-equilibrium reaction-induced dissolution. We account for different individual volumes that a component has when precipitated or dissolved. This volume non-additivity also affects the pressure and the flow rate. An equation of state is used to account for brine density variation with regard to pressure and composition. We present a numerical study of the evolution of the reservoir parameters in the framework of the developed model. It is demonstrated that the systems characterized by large Damkohler numbers (fast reaction rates) may exhibit rapid increase of porosity and permeability near the inlet probably indicating a formation of high permeable channels (wormholes). Water saturation in the zone of dissolution increases due to an increase in the bulk volume accessible for the injected fluid. Volumetric non-additivity is found to be responsible for insignificant change in the velocity of the displacement front.

General information
State: Published
Organisations: Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, CERE – Center for Energy Resources Engineering
Contributors: Alexeev, A., Shapiro, A., Thomsen, K.
Number of pages: 18
Pages: 545-562
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Transport in Porous Media
Volume: 106
Issue number: 3
ISSN (Print): 0169-3913
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.42 SJR 0.728 SNIP 1.241
Web of Science (2017): Impact factor 2.211
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.16 SJR 0.747 SNIP 1.337
Web of Science (2016): Impact factor 2.205
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.94 SJR 0.689 SNIP 1.34
Web of Science (2015): Impact factor 1.653
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.91 SJR 0.889 SNIP 1.412
Web of Science (2014): Impact factor 1.431
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.03 SJR 1.002 SNIP 1.448
Web of Science (2013): Impact factor 1.46
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.88 SJR 0.889 SNIP 1.511
Web of Science (2012): Impact factor 1.551
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes