Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite nodules - DTU Orbit (23/04/2019)

Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite nodules
In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature. In contrast to previous works on the subject, the material behaviour in both matrix and nodule is assumed to be elasto-plastic, described by the classical J2-flow theory of plasticity, and damage evolution in the matrix is taken into account via Lemaitre’s isotropic model. The effects of residual stresses due to the cooling process during manufacturing are also considered. Numerical solutions are obtained using an in-house developed finite element code; proper comparison with literature in the field is given.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, MAGMA Giessereitechnologie GmbH
Contributors: Andriollo, T., Thorborg, J., Tiedje, N. S., Hattel, J. H.
Number of pages: 9
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: I O P Conference Series: Materials Science and Engineering
Volume: 84
Article number: 012027
ISSN (Print): 1757-8981
Ratings:
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.22 SJR 0.197 SNIP 0.361
Original language: English
Electronic versions:
1757_899X_84_1_012027.pdf
DOIs:
10.1088/1757-899X/84/1/012027

Bibliographical note
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Research output: Contribution to journal › Conference article – Annual report year: 2015 › Research › peer-review