Modeling energy flexibility of low energy buildings utilizing thermal mass

In the future energy system a considerable increase in the penetration of renewable energy is expected, challenging the stability of the system, as both production and consumption will have fluctuating patterns. Hence, the concept of energy flexibility will be necessary in order for the consumption to match the production patterns, shifting demand from on-peak hours to off-peak hours. Buildings could act as flexibility suppliers to the energy system, through load shifting potential, provided that the large thermal mass of the building stock could be utilized for energy storage. In the present study the load shifting potential of an apartment of a low energy building in Copenhagen is assessed, utilizing the heat storage capacity of the thermal mass when the heating system is switched off for relieving the energy system. It is shown that when using a 4-hour preheating period before switching off the heating system, the thermal mass of the building releases sufficient heat to maintain the operative temperature above 20°C for 15 hours. This potential increases with longer preheating period. The thermal behaviour of the external envelope and internal walls is examined, identifying the heat losses of the external envelope and the thermal capacity of the internal walls as the main parameters that affect the load shifting potential of the apartment.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Section for Building Energy
Contributors: Foteinaki, K., Heller, A., Rode, C.
Number of pages: 8
Publication date: 2016

Host publication information
Title of host publication: Proceedings of the 9th international conference on indoor air quality, ventilation & energy conservation in buildings
Keywords: Energy flexibility, Load shifting, Thermal mass, Low energy buildings, Energy simulation
Electronic versions: 1406_2.pdf
Source: PublicationPreSubmission
Source-ID: 127202052
Research output: Research - peer-review > Article in proceedings – Annual report year: 2016