Model Predictive Control for Distributed Microgrid Battery Energy Storage Systems

This brief proposes a new convex model predictive control (MPC) strategy for dynamic optimal power flow between battery energy storage (ES) systems distributed in an ac microgrid. The proposed control strategy uses a new problem formulation, based on a linear d – q reference frame voltage-current model and linearized power flow approximations. This allows the optimal power flows to be solved as a convex optimization problem, for which fast and robust solvers exist. The proposed method does not assume that real and reactive power flows are decoupled, allowing line losses, voltage constraints, and converter current constraints to be addressed. In addition, nonlinear variations in the charge and discharge efficiencies of lithium ion batteries are analyzed and included in the control strategy. Real-time digital simulations were carried out for an islanded microgrid based on the IEEE 13 bus prototypical feeder, with distributed battery ES systems and intermittent photovoltaic generation. It is shown that the proposed control strategy approaches the performance of a strategy based on nonconvex optimization, while reducing the required computation time by a factor of 1000, making it suitable for a real-time MPC implementation.

General information
Publication status: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy, University of Oxford, University of New South Wales, University of Technology Sydney
Contributors: Morstyn, T., Hredzak, B., Aguilera, R. P., Agelidis, V. G.
Pages: 1107 - 1114
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: IEEE Transactions on Control Systems Technology
Volume: 26
Issue number: 3
ISSN (Print): 1063-6536
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
Original language: English
Keywords: Battery energy storage (ES), Energy management, Microgrid, Model predictive control (MPC), Optimal power flow, Quadratic programming
Electronic versions:
1702.04699.pdf
DOIs:
10.1109/TCST.2017.2699159
Source: Findit
Source-ID: 2352735982
Research output: Contribution to journal › Journal article – Annual report year: 2018 › Research › peer-review