Modal density and modal distribution of bending wave vibration fields in ribbed plates - DTU Orbit (23/12/2018)

Modal density and modal distribution of bending wave vibration fields in ribbed plates

Plates reinforced by ribs or joists are common elements in lightweight building structures, as well as in other engineering structures such as vehicles, ships, and aircraft. These structures, however, are often not well suited for simple structural acoustic prediction models such as statistical energy analysis. One reason is that the modal density is not uniformly distributed due to the spatial periodicity introduced by the ribs. This phenomenon is investigated in the present paper, using a modal model of a ribbed plate. The modal model uses the Fourier sine modes, and the coupling between the plate and ribs is incorporated using Hamilton's principle. This model is then used to investigate the modal density of the considered spatially periodic structure, and a grouping of the modes in different dominating directions is proposed. Suggestions are also given regarding how to proceed towards a simplified prediction model for ribbed plates.

General information
State: Published
Organisations: Department of Electrical Engineering, Acoustic Technology, Sektionen for Konstruktioner, Materialer og Geoteknik
Contributors: Dickow, K. A., Brunskog, J., Ohlrich, M.
Pages: 2719–2729
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of the Acoustical Society of America
Volume: 134
Issue number: 4
ISSN (Print): 0001-4966
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.224
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.83 SJR 0.819 SNIP 1.271
Web of Science (2016): Impact factor 1.547
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.77 SJR 0.854 SNIP 1.416
Web of Science (2015): Impact factor 1.572
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.8 SJR 0.887 SNIP 1.402
Web of Science (2014): Impact factor 1.503
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.707 SNIP 1.937
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.75 SJR 0.771 SNIP 1.619
Web of Science (2012): Impact factor 1.646
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.68 SJR 0.686 SNIP 1.624
Web of Science (2011): Impact factor 1.55