Möbius semiconductor nanostructures and deformation potential strain effects

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

A discussion of Möbius nanostructures is presented with focus on (1) the accuracy of the approximate differential-geometry formalism by Gravesen and Willatzen and (2) to assess the influence of bending-induced strain on Schrödinger equation eigenstates in semiconductor Möbius structures. The differential-geometry model assumed complete confinement of a quantum-mechanical particle to a zero-thickness Möbius structure where the shape was computed based on minimization of elastic bending energy only and imposing the relevant boundary conditions. In the latter work, while bending was accounted for in finding the shape of the Möbius structure it was, for simplicity, neglected altogether in determining the direct strain influence on electronic eigenstates. However, as is well-known, deformation-potential strain effects In many semiconductor materials can lead to important changes in not only the energy levels but, perhaps more so, the symmetry of the associated eigenstates and, henceforth, optical and electronic properties. In this, work we investigate finite-thickness effects of different-sized Möbius structures as well as deformation-potential hydrostatic strain implications using the Finite Element Model commercial software COMSOL. The paper contains a detailed comparison of general Finite Element Model results with the differentialgeometry method. Copyright © 2011 American Scientific Publishers All rights reserved.
Original languageEnglish
JournalJournal of Nanoelectronics and Optoelectronics
Publication date2011
Volume6
Issue1
Pages68-75
ISSN1555-130X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 2

Keywords

  • SIZE EFFECTS, CURVATURE, STRAIN, MOBIUS STRIPE, ELECTRONIC STRUCTURE
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5631468