Mining of Ship Operation Data for Energy Conservation

Publication: ResearchPh.D. thesis – Annual report year: 2012

Documents

View graph of relations

This thesis presents two state-of-the-art systems approaches to statistical modelling of fuel efficiency in ship propulsion: a regression model and a dynamical model. Three statistical regression model approaches are investigated and compared: Artificial Neural Networks (ANN), Gaussian processes (GP), and Gaussian Mixture Models (GMM). A dynamical modelling approach is introduced. This modelling approach has not been used before in the context of ship propulsion modelling, and solves problems encountered with the regression model in an onboard trim optimization application. The dynamical model is introduces through a study of the wellknown sunspot time series, and then on ship data. The dynamical modelling approach is investigated using both the Artificial Neural Network and the Gaussian mixture model. The thesis also presentes a novel and publicly available data set of high quality sensory data on which all the models are based and tested. No other similar publicly available data set exists. The data presented is a publicly available full-scale data set, with a whole range of features sampled over a period of 2 months. The data is online with an accompanying homepage, where all the results are also presented.
Original languageEnglish
Publication date2011
Place of publicationKgs. Lyngby, Denmark
PublisherTechnical University of Denmark (DTU)
Number of pages104
StatePublished
NameIMM-PHD-2011
Number264
ISSN (print)0909-3192
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 5824824