Minimal BRDF Sampling for Two-Shot Near-Field Reflectance Acquisition

We develop a method to acquire the BRDF of a homogeneous flat sample from only two images, taken by a near-field perspective camera, and lit by a directional light source. Our method uses the MERL BRDF database to determine the optimal set of lightview pairs for data-driven reflectance acquisition. We develop a mathematical framework to estimate error from a given set of measurements, including the use of multiple measurements in an image simultaneously, as needed for acquisition from near-field setups. The novel error metric is essential in the near-field case, where we show that using the condition-number alone performs poorly. We demonstrate practical near-field acquisition of BRDFs from only one or two input images. Our framework generalizes to configurations like a fixed camera setup, where we also develop a simple extension to spatially-varying BRDFs by clustering the materials.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Image Analysis & Computer Graphics, University of California
Contributors: Xu, Z., Nielsen, J. B., Yu, J., Jensen, H. W., Ramamoorthi, R.
Number of pages: 12
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: ACM Transactions on Graphics
Volume: 35
Issue number: 6
Article number: 188
ISSN (Print): 0730-0301
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 6.42 SJR 1.344 SNIP 2.841
Web of Science (2017): Impact factor 4.384
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.69 SJR 1.946 SNIP 2.57
Web of Science (2016): Impact factor 4.088
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.24 SJR 2.382 SNIP 3.686
Web of Science (2015): Impact factor 4.218
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6 SJR 1.694 SNIP 3.029
Web of Science (2014): Impact factor 4.096
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.18 SJR 1.838 SNIP 2.656
Web of Science (2013): Impact factor 3.725
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.77 SJR 1.228 SNIP 2.797
Web of Science (2012): Impact factor 3.361
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.81 SJR 1.414 SNIP 3.534
Web of Science (2011): Impact factor 3.489