Microwave absorption properties of gold nanoparticle doped polymers

This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

General information
State: Published
Organisations: Electromagnetic Systems, Department of Electrical Engineering, Department of Micro- and Nanotechnology, Nanoprobes Group, NanoSystemsEngineering Section, Surface Engineering Group, Polymer Micro and Nano Engineering Section, Università degli Studi di Bari Aldo Moro, Goethe University Frankfurt
Pages: 19-22
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Solid State Electronics
Volume: 57
Issue number: 1
ISSN (Print): 0038-1101
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.7 SJR 0.492 SNIP 0.923
Web of Science (2017): Impact factor 1.666
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.67 SJR 0.544 SNIP 0.976
Web of Science (2016): Impact factor 1.58
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.7 SJR 0.612 SNIP 0.969
Web of Science (2015): Impact factor 1.345
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.7 SJR 0.675 SNIP 0.987
Web of Science (2014): Impact factor 1.504
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.79 SJR 0.77 SNIP 1.101
Web of Science (2013): Impact factor 1.514
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.73 SJR 0.828 SNIP 1.186
Web of Science (2012): Impact factor 1.482
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.8 SJR 0.903 SNIP 1.229
Web of Science (2011): Impact factor 1.397
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.925 SNIP 1.145
Web of Science (2010): Impact factor 1.44
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.869 SNIP 1.053
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.861 SNIP 0.997
Scopus rating (2007): SJR 0.974 SNIP 1.047
Scopus rating (2006): SJR 0.936 SNIP 1.044
Scopus rating (2005): SJR 0.935 SNIP 0.98
Scopus rating (2004): SJR 0.952 SNIP 0.927
Scopus rating (2003): SJR 0.911 SNIP 0.824
Scopus rating (2002): SJR 0.817 SNIP 0.864
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.976 SNIP 0.892
Scopus rating (2000): SJR 0.945 SNIP 0.72
Scopus rating (1999): SJR 0.822 SNIP 0.73
Original language: English
Keywords: On-wafer measurement, Microwave absorption, Polymer nanocomposites, Gold nanoparticles
DOIs:
10.1016/j.sse.2010.10.021
Source: orbit
Source-ID: 275375
Research output: Research - peer-review › Journal article – Annual report year: 2011