Microstructural studies on degradation of interface between LSM–YSZ cathode and YSZ electrolyte in SOFCs

Publication: Research - peer-reviewJournal article – Annual report year: 2009

NullPointerException

View graph of relations

The changes in the cathode/electrolyte interface microstructure have been studied on anode-supported technological solid oxide fuel cells (SOFCs) that were subjected to long-term (1500 h) testing at 750 °C under high electrical loading (a current density of 0.75 A/cm2). These cells exhibit different cathode degradation rates depending on, among others, the composition of the cathode gas, being significantly smaller in oxygen than in air. FE-SEM and high resolution analytical TEM were applied for characterization of the interface on a submicron- and nano-scale. The interface degradation has been identified as the loss of LSM coverage and the loss of three-phase-boundary (TPB) length. Firstly, the degradation is caused by the size reduction of the individual LSM/YSZ electrolyte contact points (areas) that are initially of 100–200 nm in diameter. Quantitative microstructure evaluation shows that in the cell tested in air this mechanism contributes to an estimated overall reduction in the LSM coverage and the TPB length by 50 and 30%, respectively. For the cell tested in oxygen the corresponding values are 10 and 4%. Secondly, in the cell tested in air the LSM coverage and the TPB length appear to decrease further due to the more pronounced formation of insulating zirconate phases that are present locally and preferably in LSM/YSZ electrolyte contact areas. The effects of the cathode gas on the interface degradation are discussed considering the change of oxygen activity at the interface, possible changes in the Mn diffusion pattern as well as the LSM/YSZ reactivity. Finally, based on thermodynamic calculations a T–p(O2) diagram predicting the safe and risky operation conditions in terms of the zirconate formation is presented and compared with the experimental observations.
Original languageEnglish
JournalSolid State Ionics
Publication date2009
Volume180
Journal number23-25
Pages1298-1304
ISSN0167-2738
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 35

Keywords

  • Solid Oxide Fuel Cells, Fuel Cells and hydrogen
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6474777