Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping - DTU Orbit (29/12/2018)

Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The agarose stamping produced 50 μm wide conducting lines with high spatial fidelity. The deactivation agent was found to cause some degradation of the remaining conducting lines, as revealed by a stronger increase in resistance upon straining compared to the pristine polymer material. Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test patterns that allowed the electrical resistance parallel and perpendicular to the elongation direction to be measured. Electrical resistance increased both parallel and perpendicular to the direction of strain, with a faster increase observed parallel to the straining.

General information
State: Published
Organisations: Risø National Laboratory for Sustainable Energy, The Danish Polymer Centre, Department of Chemical and Biochemical Engineering
Contributors: Hansen, T. S., Hassager, O., Larsen, N. B., Clark, N.
Pages: 961-967
Publication date: 2007
Peer-reviewed: Yes

Publication information
Journal: Synthetic Metals
Volume: 157
Issue number: 22-23
ISSN (Print): 0379-6779
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.49 SJR 0.672 SNIP 0.766
Web of Science (2017): Impact factor 2.526
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.45 SJR 0.666 SNIP 0.756
Web of Science (2016): Impact factor 2.435
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.27 SJR 0.624 SNIP 0.735
Web of Science (2015): Impact factor 2.299
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.42 SJR 0.709 SNIP 0.934
Web of Science (2014): Impact factor 2.252
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.48 SJR 0.719 SNIP 0.951
Web of Science (2013): Impact factor 2.222
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.19 SJR 0.844 SNIP 0.993
Web of Science (2012): Impact factor 2.109
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.01 SJR 0.784 SNIP 0.907
Web of Science (2011): Impact factor 1.829
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.812 SNIP 0.867
Web of Science (2010): Impact factor 1.871
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.961 SNIP 1.08
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.072 SNIP 0.918
Scopus rating (2007): SJR 1.224 SNIP 0.977
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.921 SNIP 0.729
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.953 SNIP 0.798
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.8 SNIP 0.653
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.921 SNIP 0.892
Scopus rating (2002): SJR 1.287 SNIP 0.696
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.799 SNIP 0.875
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.571 SNIP 0.551
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.838 SNIP 0.911
Original language: English
Keywords: PEDOT, Conductive polymer, Elastomer, Micropatterning, Stretchable, Inkjet, Stamping
DOIs: 10.1016/j.synthmet.2007.10.003
Source: orbit
Source-ID: 223130
Research output: Research - peer-review > Journal article – Annual report year: 2007