Microbeam evolution: From single cell irradiation to preclinical studies - DTU Orbit (24/12/2018)

Microbeam evolution: From single cell irradiation to preclinical studies

Purpose: This review follows the development of microbeam technology from the early days of single cell irradiations, to investigations of specific cellular mechanisms and to the development of new treatment modalities in vivo. A number of microbeam applications are discussed with a focus on preclinical modalities and translation towards clinical application.

Conclusions: The development of radiation microbeams has been a valuable tool for the exploration of fundamental radiobiological response mechanisms. The strength of micro-irradiation techniques lies in their ability to deliver precise doses of radiation to selected individual cells in vitro or even to target subcellular organelles. These abilities have led to the development of a range of microbeam facilities around the world allowing the delivery of precisely defined beams of charged particles, X-rays, or electrons.

In addition, microbeams have acted as mechanistic probes to dissect the underlying molecular events of the DNA damage response following highly localised dose deposition. Further advances in very precise beam delivery have also enabled the transition towards new and exciting therapeutic modalities developed at synchrotrons to deliver radiotherapy using plane parallel microbeams, in Microbeam Radiotherapy (MRT).

General information

State: Published
Organisations: Center for Nuclear Technologies, The Hevesy Laboratory, Queen's University Belfast, University of Bern, National Physical Laboratory, European Synchrotron Radiation Facility
Number of pages: 11
Pages: 708-718
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: International Journal of Radiation Biology
Volume: 94
Issue number: 8
ISSN (Print): 0955-3002
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.73 SJR 0.653 SNIP 0.696
Web of Science (2017): Impact factor 1.97
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.84 SJR 0.72 SNIP 0.757
Web of Science (2016): Impact factor 1.992
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.89 SJR 0.74 SNIP 0.771
Web of Science (2015): Impact factor 1.779
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.78 SJR 0.588 SNIP 0.808
Web of Science (2014): Impact factor 1.687
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.91 SJR 0.71 SNIP 0.716
Web of Science (2013): Impact factor 1.837
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.12 SJR 0.866 SNIP 0.914
Web of Science (2012): Impact factor 1.895
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
<table>
<thead>
<tr>
<th>Year</th>
<th>Scopus Rating (SJR)</th>
<th>Scopus Rating (SNIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2.11</td>
<td>0.984</td>
</tr>
<tr>
<td>2010</td>
<td>0.782</td>
<td>0.736</td>
</tr>
<tr>
<td>2009</td>
<td>0.658</td>
<td>0.781</td>
</tr>
<tr>
<td>2008</td>
<td>0.792</td>
<td>0.71</td>
</tr>
<tr>
<td>2007</td>
<td>0.553</td>
<td>0.657</td>
</tr>
<tr>
<td>2006</td>
<td>0.71</td>
<td>0.78</td>
</tr>
<tr>
<td>2005</td>
<td>0.823</td>
<td>0.838</td>
</tr>
<tr>
<td>2004</td>
<td>0.884</td>
<td>0.813</td>
</tr>
<tr>
<td>2003</td>
<td>0.957</td>
<td>0.931</td>
</tr>
<tr>
<td>2002</td>
<td>0.886</td>
<td>1.009</td>
</tr>
<tr>
<td>2001</td>
<td>1.145</td>
<td>1.068</td>
</tr>
<tr>
<td>2000</td>
<td>0.977</td>
<td>1.154</td>
</tr>
<tr>
<td>1999</td>
<td>0.976</td>
<td>1.157</td>
</tr>
</tbody>
</table>

Original language: English
Keywords: Microbeam, DNA damage, MRT, Bystander effects of radiation
DOIs:
10.1080/09553002.2018.1425807
Source: FindIt
Source-ID: 2395290525
Research output: Research - peer-review › Journal article – Annual report year: 2018