Microalgae bio refinery symbiosis: screening, production, and process analytical technology

Microalgae bio refinery symbiosis: screening, production, and process analytical technology

Microalgae treatment of municipal wastewater (WW) has been the focal point of microalgal biotechnology research for several decades. However, this technology did not have a competitive advantage over other WW treatment technologies, which could be implemented in smaller areal footprints. In the past few decades, microalgal WW treatment has made a resurgence with the idea of using biomass from microalgal WW treatment, as a source of lipids for conversion into biodiesel. However, the savings from the treatment of nutrients and organic matter, as well as biodiesel production, are still not competitive with the price of crude oil. In recent years, microalgal research continued with the prospect of a microalgae bio refinery, where microalgal byproducts and coproducts are extracted to valorize the entire microalgal production, in which the sum of the parts of the microalgae is greater than the whole microalgae. However, in large part, the microalgae bio refinery does not comply with the treatment of nutrient-rich municipal WWs, due to regulatory concerns. Only recently, it was realized that bioindustrial WWs are viable and conceivably regulatory compliant nutrient rich waste streams, capable of sustaining microalgal growth, as much as municipal WWs. The concept of an “industrial symbiosis” has also emerged in the past several decades, in which networks of industries cooperate to use waste sources from neighboring industries, in industrial parks, to create added value. The intersection of the microalgae biorefinery and industrial symbiosis, in a microalgae bio refinery symbiosis (MBS), may be the next generation scheme to valorize the microalgal production and promote industrial and global sustainability. Moreover, technological advances in screening, outdoor photobioreactor (PBR) design, macromolecular monitoring and process automation must all be addressed to improve microalgal productivity models and automation, by manipulating large, time-resolute data sets, so-called “big data,” which can be acquired through high-selectivity vibrational spectroscopy, such as mid-infrared (MIR), near-infrared (NIR), or Raman vibrational spectroscopies. These large, real-time data sets can now be used to create adaptive models from artificial intelligence/machine learning tools or “black-box” models, to automate large-scale, outdoor PBRs treating WW.

With microalgae, now entering into a new paradigm of food, feed, pharmaceuticals and functional products, on top of biofuels in a biorefinery, there will be a growing need to maintain product quality, regulate, and mitigate contamination, especially in a symbiosis with WW. Vibrational spectroscopies can be used to monitor several microalgal components.
simultaneously, which can be used to aid fractionation of microalgal compounds in a biorefinery, while improving model building for automation and control of product quality and contamination, where quality can be built into the system. The results and research summarized in this thesis demonstrate that the modernization of microalgal research is becoming increasingly necessary and beneficial to microalgae production in an MBS. The focus of this thesis is to bring together lab-scale demonstrations, scaled up knowledge, and a critical outlook of modern technologies capable of making the MBS a reality.

General information
Publication status: Published
Organisations: Department of Environmental Engineering
Contributors: Podevin, M. P. A.
Number of pages: 65
Publication date: 2017

Publication information
Place of publication: Kgs. Lyngby
Publisher: Department of Environmental Engineering, Technical University of Denmark (DTU)
Original language: English
Electronic versions:
WWW-version. Embargo ended: 19/09/2017